# **M**

#### **People with solutions**

**M+P** | MBBM group www.mplusp.eu

### Complaints about vibration-induced noise from the underground metro line in Amsterdam

Edwin Nieuwenhuizen

Rail Technology Conferences 2014 Düsseldorf





2 Rail Technology Conferences 2014 Düsseldorf

### **M**

# We work on improving the living environment





### We work in many markets





# We have a broad range of products and services







# We are part of an international network of experts



### **Amsterdam metro lines**





underground metro lines in historic city centre

OL='East Line' NZ='North South Line' Rail Technology Conferences 2014 Düsseldorf

### **M**

### Metro tunnels in Amsterdam (1/2)

'East Line'

- 1975
- 1975-1980
- demolition of centre district 'Nieuwmarkt' 1980 construction of metro tunnel by sinking caisson method
- 1980

2014

- metro tunnel in service
- 1980-1985 ne
- 2007-2013
- new residences built on top of tunnel, isolator pads in building structure to prevent nuisance complete renovation and replacement of the rail superstructure introduction of new rolling stock (M5)



### Metro tunnels in Amsterdam (1/2)

### 'North South Line'

 2009-2012 construction of metro tunnel, partly by drilling method (TBM)
 2017 North South Line in service (anticipated)

### Noise and vibration nuisance

- recent increase of noise complaints caused by the 'East Line' in district Nieuwmarkt
- very emotional response by residents
- description of nuisance is divergent
- in general: increase in noise generated by metro pass-by since
  2012
- survey goal of M+P (2013): to objectify the complaints and to find the most probable cause of the increase of number of complaints
- project scope is not yet to find solutions for mitigation

### **Stakeholders**

- disturbed residents
- several housing corporations
- GVB metro carrier
- Dienst Metro infrastructure manager
- other departments of Amsterdam municipality

### **Project planning**

Given: narrow time schedule and limited budget

- enumerating possible causes of increased number of complaints
- conducting measurements in June 2013:
  - simultaneous at tracks, tunnel structure, building foundation and residential spaces
- historic measurement and construction data available in December 2013
- measuring of track roughness in December 2013
- final vibration measurements anticipated in April 2014

12 Rail Technology Conferences 2014 Düsseldorf

### **Tunnel structure example**







### **Noise requirements 1980**

requirements for residences, imposed by the Department of Building Inspection of the Amsterdam municipality

|                            | day      | evening  | night    |
|----------------------------|----------|----------|----------|
| equivalent L <sub>eq</sub> | 35 dB(A) | 30 dB(A) | 20 dB(A) |
| peak L <sub>Amax</sub>     | 45 dB(A) | 40 dB(A) | 30 dB(A) |

14 Rail Technology Conferences 2014 Düsseldorf



### **Mitigation of vibration-induced noise**

Amsterdam Pentagon building



### **M**

### Possible causes of nuisance (1/3)

#### Receiver (residents)

- psycho acoustic effects (negative publicity 'North South line')
  - sinking buildings along route
  - nuisance from construction noise
  - construction costs 100% over budget (€1.5 bn)

16 Rail Technology Conferences 2014 Düsseldorf

### **Possible causes of nuisance (2/3)**

Transfer path

- aging of isolator pads resulting in increase in natural frequency of mass spring system
- occurrence of rigid joints between foundation and ground floor

## **M**

### **Possible causes of nuisance (3/3)**

At the time of renovation of track, acoustic/vibrational consequences were not considered

#### Source

- new provisions for tunnel safety (airborne noise)
- different behavior of new track superstructure (renovation)
- longitudinal sagging of the rail bed (renovation)
- increase of rail roughness (regular maintenance)
- increase of wheel roughness (reduced maintenance of M2/3 stock that will be replaced by M5)
- new train configuration (3 coupled carriages)



### **Measurements in residential space (1/2)**

Amsterdam Pentagon building, 3th floor – June 2013

- L<sub>Amax</sub> is higher than 30 dB(A) limit
- 80 Hz 1/3 octave band is predominant and responsible for nuisance
- pass-by on southbound track noisier than vice versa (+8 dB)
- metros with 3 carriages noisier than with 2 (+2 dB)
- wall vibration level matches noise level: no airborne transfer path



### **Measurements in residential space (2/2)**





### **Measurements in basement (1/3)**

Amsterdam Pentagon building, basement – June 2014

- quick inspection revealed possible deviations:
  - not all isolator pads are load bearing
  - flexible joints between non-bearing walls and ground floor are not visible (rigid contacts?)
  - no gap between pavement and facade
- in situ measured insertion loss of rubber pads is about 15 dB at 80 Hz
- vibration levels on ground floor highest above supposed nonbearing walls and near facades (reveals a vibration bypass)



### **Measurements in basement (2/3)**





### **Measurements in basement (3/3)**





### **Measurements on tunnel wall**

 $L_v$  [dB re 50 10<sup>-8</sup> ms<sup>-1</sup>] western tunnel wall, curved track horizontal direction

| Date      | Caisson<br>nr | South-<br>bound | North-<br>bound |
|-----------|---------------|-----------------|-----------------|
| 21-7-1980 | 02.08         | 60              | 56              |
| 1-3-1983  | 02.08         | 68              | 60              |
| 24-8-1985 | 52.05         | 68              | 63              |
| 24-8-1985 | 52.07         | 64              | 65              |
|           |               |                 |                 |
| 27-6-2013 | km 1.100      | 66              | 58              |

- apparently no significant increase in vibration level since the 80's
- but source-related causes may not be rejected yet:
  - not exact same measurement position
  - large scatter (±4 dB)
  - relatively limited number of pass-bys



### **Measurement on rail foot (1/3)**

- metros with 3 carriages cause higher vibration levels than with 2 carriages
- average vibration level of southbound track is higher than northbound
- metros change direction at CS: wheel roughness is probably not the cause
- vertical Track Decay Rates of tracks seem normal



### **Measurement on rail foot (2/3)**

average of inner and outer rail





### **Measurement on rail foot (3/3)**



### **Rail roughness measurements (1/2)**

Measurements done prior to rail head grinding

- 80 Hz at 60 km/h, thus λ=20 cm
- no peak at 20 cm that explains noise at 80 Hz
- no decrease in complaints after rail head grinding (Jan 2014)
- rail roughness is probably not the cause of nuisance



### **Rail roughness measurements (2/2)**



wave length [cm]





- metro pass-by noise level in residence is higher than requirements of 1980
- bypass of vibration isolators pads most probable cause of nuisance, possibly caused by resettling of building and/or street repaying
- it is unlikely that the cause is source-related, but this needs to verified by final measurements, anticipated in April 2014